The MITF family of transcription factors: Role in endolysosomal biogenesis, Wnt signaling, and oncogenesis.
نویسندگان
چکیده
Canonical Wnt signaling influences cellular fate and proliferation through inhibition of Glycogen Synthase Kinase (GSK3) and the subsequent stabilization of its many substrates, most notably β-Catenin, a transcriptional co-activator. MITF, a melanoma oncogene member of the microphthalmia family of transcription factors (MiT), was recently found to contain novel GSK3 phosphorylation sites and to be stabilized by Wnt. Other MiT members, TFEB and TFE3, are known to play important roles in cellular clearance pathways by transcriptionally regulating the biogenesis of lysosomes and autophagosomes via activation of CLEAR elements in gene promoters of target genes. Recent studies suggest that MITF can also upregulate many lysosomal genes. MiT family members are dysregulated in cancer and are considered oncogenes, but the underlying oncogenic mechanisms remain unclear. Here we review the role of MiT members, including MITF, in lysosomal biogenesis, and how cancers overexpressing MITF, TFEB or TFE3 could rewire the lysosomal pathway, inhibit cellular senescence, and activate Wnt signaling by increasing sequestration of negative regulators of Wnt signaling in multivesicular bodies (MVBs). Microarray studies suggest that MITF expression inhibits macroautophagy. In melanoma the MITF-driven increase in MVBs generates a positive feedback loop between MITF, Wnt, and MVBs.
منابع مشابه
MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells.
Canonical Wnt signaling plays an important role in development and disease, regulating transcription of target genes and stabilizing many proteins phosphorylated by glycogen synthase kinase 3 (GSK3). We observed that the MiT family of transcription factors, which includes the melanoma oncogene MITF (micropthalmia-associated transcription factor) and the lysosomal master regulator TFEB, had the ...
متن کاملControl of lysosomal biogenesis and Notch-dependent tissue patterning by components of the TFEB-V-ATPase axis in Drosophila melanogaster
In vertebrates, TFEB (transcription factor EB) and MITF (microphthalmia-associated transcription factor) family of basic Helix-Loop-Helix (bHLH) transcription factors regulates both lysosomal function and organ development. However, it is not clear whether these 2 processes are interconnected. Here, we show that Mitf, the single TFEB and MITF ortholog in Drosophila, controls expression of vacuo...
متن کاملThe MiTF/TFE Family of Transcription Factors: Master Regulators of Organelle Signaling, Metabolism, and Stress Adaptation.
The microphthalmia family (MITF, TFEB, TFE3, and TFEC) of transcription factors is emerging as global regulators of cancer cell survival and energy metabolism, both through the promotion of lysosomal genes as well as newly characterized targets, such as oxidative metabolism and the oxidative stress response. In addition, MiT/TFE factors can regulate lysosomal signaling, which includes the mTORC...
متن کاملInduction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a.
Microphthalmia-associated transcription factor (Mitf) plays a critical role in the development of neural crest-derived melanocytes. Here, we show that exogenously added Wnt-3a protein, an intercellular signaling molecule, up-regulates the expression of endogenous melanocyte-specific Mitf (Mitf-M) mRNA in cultured melanocytes. The melanocyte-specific promoter of the human MITF gene (MITF-M promo...
متن کاملThe WNT/Beta-catenin pathway in melanoma.
The Wnt/beta-catenin pathway is involved in various cellular activities--including determination, proliferation, migration and differentiation--in embryonic development and adult homeostasis. The deregulation or constitutive activation of the Wnt/beta-catenin pathway may lead to cancer formation. This review focuses on the role of the Wnt/beta-catenin canonical signaling pathway in the melanocy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pharmacological research
دوره 99 شماره
صفحات -
تاریخ انتشار 2015